Direct Photons at RHIC

Results from PHENIX -

PHOTON 2005, Warsaw, 01-Sep-2005

Klaus Reygers Institut für Kernphysik University of Münster

for the PHENIX collaboration

Direct Photons in p+p Collisions – Why?

1. Test of QCD

- Photon directly from interaction of pointlike partons, no complication due to parton→hadron fragmentation
- 2. Information about gluon distribution in the proton (especially interesting for fractional momenta $x_{\rm Bjorken} > 0.1$)
 - Gluon involved at leading order (LO) in Quark-Gluon Compton scattering (q+g→q+γ)
 - This is in contrast to deeply inelastic scattering and Drell-Yan where gluon is involved only at NLO
 - However, γ data not generally used in global QCD fits!!
- 3. Baseline for direct photon measurements in A+A collisions

Experimental Challenge: Background from $\pi^0 o \gamma + \gamma$, $\eta o \gamma + \gamma$

p+p(p̄) Direct Photon Data and pQCD – What's the Status?

- Decent agreement at large √s
- Substantial deviations between data and NLO pQCD at small √s
- Questions:
 - Is there a systematic pattern of deviation?
 - ◆ If so, can the introduction of additional transverse momentum (k_T) of initial partons improve the agreement?
 - Are the data sets mutually consistent?

Need new measurements to solve the puzzle

Evidence for k_T Broadening

E706, Phys.Rev.D70:092009,2004

■ Data from E706 fixed target experiment can be explained with $\langle k_T \rangle \approx 1.3 \text{ GeV}/c$

k_⊤ broadening:

Is there evidence for k_T broadening in p+p at \sqrt{s} = 200 GeV ?

RHIC: Relativistic Heavy Ion Collider

- 2 independent rings
 - circumference 3.8 km
 - 6 intersection, 4 experiments
- Any nucleus on any other, polarized p+p collisions
- Luminosities:

Au+Au: 2 x 10²⁶ cm⁻²s⁻¹

• p+p: 1.4 x 10³¹ cm⁻²s⁻¹

Focus of this talk: p+p direct photon data from Run-3 (2003)

$$\sqrt{s} = 200 \text{ GeV}, \int L dt = 266 \text{ nb}^{-1}$$

The PHENIX Electromagnetic Calorimeter

Pseudorapidity coverage : $|\eta| < 0.35$

PbSc:

- Highly segmented lead
 scintillator sampling calorimeter
- Module size:5.5 cm x 5.5 cm x 37 cm

PbGI:

- Highly segmented lead glass
 Cherenkov calorimeter
- Module size:4.0 cm x 4.0 cm x 40 cm
- Two technologies very important for understanding systematic errors

Analysis Procedure (I)

- 1. Start with all photons in a given p_T bin
- 2. π^0 -Tagging:
 - Determine number of photons in this bin which form inv. mass in π^0 range with any other hit
 - Subtract combinatorial background
- 3. Correct for tagging efficiency and contribution from η, ω, η'
- 4. $N_{
 m direct}^{\gamma} = N_{
 m all} N_{
 m decay}$

Tagging efficiency from Monte Carlo simulation

$$N_{
m decay}^{\pi^0} = N_{
m decay,tagged}^{\pi^0} / arepsilon_{
m tagging}$$
 $N_{
m decay} = a \cdot N_{
m decay}^{\pi^0}$
Contribution from $\eta, \omega, \eta', ...$

Analysis Procedure (II)

■ Efficiency for tagging π^0 decay photons determined with Monte Carlo calculation

To 100% removed by a cut on the shower width

⇒ Experimental⇒ background = A+B

Tagging Efficiency:

$$\varepsilon_{\text{tagging}} = \frac{A}{A + B}$$

Shower merging of π^0 decay photons doesn't pose a problem!

Direct Photon Spectrum

- p+p direct photon data at highest energy world wide
- NLO pQCD (W. Vogelsang)
 - CTEQ6M PDF
 - GRV parton-to-photon fragmentation function
 - Uncertainty due to choice of unphysical scales: 20-30%

Good agreement between data and NLO pQCD

Data/Theory Comparison

Plot updated with PHENIX data: Monique Werlen, RHIC-AGS Users meeting, 2005

No need for additional k_T broadening in NLO pQCD description of p+p data at \sqrt{s} = 200 GeV

Isolation Cut

Isolation cut:

$$R := \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

$$E_{sum}(R < 0.5) < E_{\gamma} \times 0.1$$

$$E_{\gamma} \times 0.1$$

No correction for isolation cut efficiency

No discernable difference in direct photon cross section with and without isolation cut

γ_{direct} / π⁰ Ratio

PHENIX π^0 data: Phys.Rev.Lett.91:241803,2003

 $\gamma_{\rm direct}$ / $\pi^{\rm 0}$ data agree with pQCD expectation

Direct Photons A+A Collisions – Why?

- 1. High p_T direct photons provide measure of parton luminosities in A+A collision
 - High-p_T direct photons produced in initial hard parton-parton scatterings
 - Photons leave the subsequently produced medium (quark-gluon plasma!?) unaltered
- 2. Low p_T thermal direct photons (~1 < p_T < ~3 GeV/c) reflect the temperature of the quark-gluon plasma ($dN/dE \sim exp(-E/T)$) (not part of this talk)

Direct Photons in Au+Au

Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

- Nuclear overlap function (T_{AB})
 - Measures increase of parton luminosity as function of impact parameter b
 - Calculated with a simple geometrical Glauber model

High- p_T direct photons scale with $\langle T_{AB} \rangle$

Nuclear Modification Factor R_{AB}

$$R_{AB} = \frac{\left. \frac{dN / dp_T \right|_{A+B}}{\left\langle T_{AB} \right\rangle \times d\sigma / dp_T \right|_{p+p}}$$

Hadrons are suppressed while direct photons are not: Evidence for parton energy loss (as expected in the QGP)

Summary

- p+p collisions at \sqrt{s} = 200 GeV
 - Direct photon production described by NLO pQCD
 - No need for strong initial state k_T broadening in pQCD description
- Au+Au collisions at √s_{NN} = 200 GeV
 - High-p_T pions are suppressed relative to parton luminosity increase calculated from nuclear geometry (i.e. relative to T_{AB} × p+p)
 - Unlike pions high-p_T direct photons follow T_{AB} scaling
 - Thus, pion suppression is a final state effect, consistent with parton energy loss in a quark-gluon plasma

Backup

Isolation Cut (I)

Isolation cut

$$R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.5$$

$$E_{sum}(R < 0.5) < E_{\gamma} \times 0.1$$

- Isolation cut should remove contribution from bremsstrahlung
- Difficult to determine the efficiency of the isolation cut

Isolation Cut (II)

No correction for isolation cut efficiency

No discernable difference in direct photon cross section with and without isolation cut

Direct Photon Spectra

Good agreement between different detectors and methods

Centrality Dependence of R_{AB}

- T_{AB} scaling of direct photons for all centrality classes
- Pion suppression sets in for N_{part} greater ~50-75

Systematic Errors

200 GeV p+p, tagging method:			
	Lowest p _T 5-5.5 [GeV/c]	Highest p _T 15-17 [GeV/c]	
π^0 tagging efficiency Non π^0 contribution Photon acceptance and smearing Photon conversion effect	30% 27% 10% 1%	5% 6% 10% 1%	nt to point
Luminosity measurement BBC trigger bias	12% 3%	12% glo	bal
Total	43%	18%	

p+p(p̄) Direct Photon Data and pQCD – What's the Status?

- Decent agreement at large √s
- Substantial deviations between data and NLO pQCD at small √s
- Systematic pattern of deviation lead to speculations that transverse momentum (k_T) of initial partons prior to hard scattering needs to be taken into account ...
- ... or maybe there are just inconsistencies in the measured data?

Need new measurements to solve the puzzle